In-Depth Analysis: What Is a Bitcoin Block? - Coindoo

Bob The Magic Custodian

Summary: Everyone knows that when you give your assets to someone else, they always keep them safe. If this is true for individuals, it is certainly true for businesses.
Custodians always tell the truth and manage funds properly. They won't have any interest in taking the assets as an exchange operator would. Auditors tell the truth and can't be misled. That's because organizations that are regulated are incapable of lying and don't make mistakes.

First, some background. Here is a summary of how custodians make us more secure:

Previously, we might give Alice our crypto assets to hold. There were risks:

But "no worries", Alice has a custodian named Bob. Bob is dressed in a nice suit. He knows some politicians. And he drives a Porsche. "So you have nothing to worry about!". And look at all the benefits we get:
See - all problems are solved! All we have to worry about now is:
It's pretty simple. Before we had to trust Alice. Now we only have to trust Alice, Bob, and all the ways in which they communicate. Just think of how much more secure we are!

"On top of that", Bob assures us, "we're using a special wallet structure". Bob shows Alice a diagram. "We've broken the balance up and store it in lots of smaller wallets. That way", he assures her, "a thief can't take it all at once". And he points to a historic case where a large sum was taken "because it was stored in a single wallet... how stupid".
"Very early on, we used to have all the crypto in one wallet", he said, "and then one Christmas a hacker came and took it all. We call him the Grinch. Now we individually wrap each crypto and stick it under a binary search tree. The Grinch has never been back since."

"As well", Bob continues, "even if someone were to get in, we've got insurance. It covers all thefts and even coercion, collusion, and misplaced keys - only subject to the policy terms and conditions." And with that, he pulls out a phone-book sized contract and slams it on the desk with a thud. "Yep", he continues, "we're paying top dollar for one of the best policies in the country!"
"Can I read it?' Alice asks. "Sure," Bob says, "just as soon as our legal team is done with it. They're almost through the first chapter." He pauses, then continues. "And can you believe that sales guy Mike? He has the same year Porsche as me. I mean, what are the odds?"

"Do you use multi-sig?", Alice asks. "Absolutely!" Bob replies. "All our engineers are fully trained in multi-sig. Whenever we want to set up a new wallet, we generate 2 separate keys in an air-gapped process and store them in this proprietary system here. Look, it even requires the biometric signature from one of our team members to initiate any withdrawal." He demonstrates by pressing his thumb into the display. "We use a third-party cloud validation API to match the thumbprint and authorize each withdrawal. The keys are also backed up daily to an off-site third-party."
"Wow that's really impressive," Alice says, "but what if we need access for a withdrawal outside of office hours?" "Well that's no issue", Bob says, "just send us an email, call, or text message and we always have someone on staff to help out. Just another part of our strong commitment to all our customers!"

"What about Proof of Reserve?", Alice asks. "Of course", Bob replies, "though rather than publish any blockchain addresses or signed transaction, for privacy we just do a SHA256 refactoring of the inverse hash modulus for each UTXO nonce and combine the smart contract coefficient consensus in our hyperledger lightning node. But it's really simple to use." He pushes a button and a large green checkmark appears on a screen. "See - the algorithm ran through and reserves are proven."
"Wow", Alice says, "you really know your stuff! And that is easy to use! What about fiat balances?" "Yeah, we have an auditor too", Bob replies, "Been using him for a long time so we have quite a strong relationship going! We have special books we give him every year and he's very efficient! Checks the fiat, crypto, and everything all at once!"

"We used to have a nice offline multi-sig setup we've been using without issue for the past 5 years, but I think we'll move all our funds over to your facility," Alice says. "Awesome", Bob replies, "Thanks so much! This is perfect timing too - my Porsche got a dent on it this morning. We have the paperwork right over here." "Great!", Alice replies.
And with that, Alice gets out her pen and Bob gets the contract. "Don't worry", he says, "you can take your crypto-assets back anytime you like - just subject to our cancellation policy. Our annual management fees are also super low and we don't adjust them often".

How many holes have to exist for your funds to get stolen?
Just one.

Why are we taking a powerful offline multi-sig setup, widely used globally in hundreds of different/lacking regulatory environments with 0 breaches to date, and circumventing it by a demonstrably weak third party layer? And paying a great expense to do so?
If you go through the list of breaches in the past 2 years to highly credible organizations, you go through the list of major corporate frauds (only the ones we know about), you go through the list of all the times platforms have lost funds, you go through the list of times and ways that people have lost their crypto from identity theft, hot wallet exploits, extortion, etc... and then you go through this custodian with a fine-tooth comb and truly believe they have value to add far beyond what you could, sticking your funds in a wallet (or set of wallets) they control exclusively is the absolute worst possible way to take advantage of that security.

The best way to add security for crypto-assets is to make a stronger multi-sig. With one custodian, what you are doing is giving them your cryptocurrency and hoping they're honest, competent, and flawlessly secure. It's no different than storing it on a really secure exchange. Maybe the insurance will cover you. Didn't work for Bitpay in 2015. Didn't work for Yapizon in 2017. Insurance has never paid a claim in the entire history of cryptocurrency. But maybe you'll get lucky. Maybe your exact scenario will buck the trend and be what they're willing to cover. After the large deductible and hopefully without a long and expensive court battle.

And you want to advertise this increase in risk, the lapse of judgement, an accident waiting to happen, as though it's some kind of benefit to customers ("Free institutional-grade storage for your digital assets.")? And then some people are writing to the OSC that custodians should be mandatory for all funds on every exchange platform? That this somehow will make Canadians as a whole more secure or better protected compared with standard air-gapped multi-sig? On what planet?

Most of the problems in Canada stemmed from one thing - a lack of transparency. If Canadians had known what a joke Quadriga was - it wouldn't have grown to lose $400m from hard-working Canadians from coast to coast to coast. And Gerald Cotten would be in jail, not wherever he is now (at best, rotting peacefully). EZ-BTC and mister Dave Smilie would have been a tiny little scam to his friends, not a multi-million dollar fraud. Einstein would have got their act together or been shut down BEFORE losing millions and millions more in people's funds generously donated to criminals. MapleChange wouldn't have even been a thing. And maybe we'd know a little more about CoinTradeNewNote - like how much was lost in there. Almost all of the major losses with cryptocurrency exchanges involve deception with unbacked funds.
So it's great to see transparency reports from BitBuy and ShakePay where someone independently verified the backing. The only thing we don't have is:
It's not complicated to validate cryptocurrency assets. They need to exist, they need to be spendable, and they need to cover the total balances. There are plenty of credible people and firms across the country that have the capacity to reasonably perform this validation. Having more frequent checks by different, independent, parties who publish transparent reports is far more valuable than an annual check by a single "more credible/official" party who does the exact same basic checks and may or may not publish anything. Here's an example set of requirements that could be mandated:
There are ways to structure audits such that neither crypto assets nor customer information are ever put at risk, and both can still be properly validated and publicly verifiable. There are also ways to structure audits such that they are completely reasonable for small platforms and don't inhibit innovation in any way. By making the process as reasonable as possible, we can completely eliminate any reason/excuse that an honest platform would have for not being audited. That is arguable far more important than any incremental improvement we might get from mandating "the best of the best" accountants. Right now we have nothing mandated and tons of Canadians using offshore exchanges with no oversight whatsoever.

Transparency does not prove crypto assets are safe. CoinTradeNewNote, Flexcoin ($600k), and Canadian Bitcoins ($100k) are examples where crypto-assets were breached from platforms in Canada. All of them were online wallets and used no multi-sig as far as any records show. This is consistent with what we see globally - air-gapped multi-sig wallets have an impeccable record, while other schemes tend to suffer breach after breach. We don't actually know how much CoinTrader lost because there was no visibility. Rather than publishing details of what happened, the co-founder of CoinTrader silently moved on to found another platform - the "most trusted way to buy and sell crypto" - a site that has no information whatsoever (that I could find) on the storage practices and a FAQ advising that “[t]rading cryptocurrency is completely safe” and that having your own wallet is “entirely up to you! You can certainly keep cryptocurrency, or fiat, or both, on the app.” Doesn't sound like much was learned here, which is really sad to see.
It's not that complicated or unreasonable to set up a proper hardware wallet. Multi-sig can be learned in a single course. Something the equivalent complexity of a driver's license test could prevent all the cold storage exploits we've seen to date - even globally. Platform operators have a key advantage in detecting and preventing fraud - they know their customers far better than any custodian ever would. The best job that custodians can do is to find high integrity individuals and train them to form even better wallet signatories. Rather than mandating that all platforms expose themselves to arbitrary third party risks, regulations should center around ensuring that all signatories are background-checked, properly trained, and using proper procedures. We also need to make sure that signatories are empowered with rights and responsibilities to reject and report fraud. They need to know that they can safely challenge and delay a transaction - even if it turns out they made a mistake. We need to have an environment where mistakes are brought to the surface and dealt with. Not one where firms and people feel the need to hide what happened. In addition to a knowledge-based test, an auditor can privately interview each signatory to make sure they're not in coercive situations, and we should make sure they can freely and anonymously report any issues without threat of retaliation.
A proper multi-sig has each signature held by a separate person and is governed by policies and mutual decisions instead of a hierarchy. It includes at least one redundant signature. For best results, 3of4, 3of5, 3of6, 4of5, 4of6, 4of7, 5of6, or 5of7.

History has demonstrated over and over again the risk of hot wallets even to highly credible organizations. Nonetheless, many platforms have hot wallets for convenience. While such losses are generally compensated by platforms without issue (for example Poloniex, Bitstamp, Bitfinex, Gatecoin, Coincheck, Bithumb, Zaif, CoinBene, Binance, Bitrue, Bitpoint, Upbit, VinDAX, and now KuCoin), the public tends to focus more on cases that didn't end well. Regardless of what systems are employed, there is always some level of risk. For that reason, most members of the public would prefer to see third party insurance.
Rather than trying to convince third party profit-seekers to provide comprehensive insurance and then relying on an expensive and slow legal system to enforce against whatever legal loopholes they manage to find each and every time something goes wrong, insurance could be run through multiple exchange operators and regulators, with the shared interest of having a reputable industry, keeping costs down, and taking care of Canadians. For example, a 4 of 7 multi-sig insurance fund held between 5 independent exchange operators and 2 regulatory bodies. All Canadian exchanges could pay premiums at a set rate based on their needed coverage, with a higher price paid for hot wallet coverage (anything not an air-gapped multi-sig cold wallet). Such a model would be much cheaper to manage, offer better coverage, and be much more reliable to payout when needed. The kind of coverage you could have under this model is unheard of. You could even create something like the CDIC to protect Canadians who get their trading accounts hacked if they can sufficiently prove the loss is legitimate. In cases of fraud, gross negligence, or insolvency, the fund can be used to pay affected users directly (utilizing the last transparent balance report in the worst case), something which private insurance would never touch. While it's recommended to have official policies for coverage, a model where members vote would fully cover edge cases. (Could be similar to the Supreme Court where justices vote based on case law.)
Such a model could fully protect all Canadians across all platforms. You can have a fiat coverage governed by legal agreements, and crypto-asset coverage governed by both multi-sig and legal agreements. It could be practical, affordable, and inclusive.

Now, we are at a crossroads. We can happily give up our freedom, our innovation, and our money. We can pay hefty expenses to auditors, lawyers, and regulators year after year (and make no mistake - this cost will grow to many millions or even billions as the industry grows - and it will be borne by all Canadians on every platform because platforms are not going to eat up these costs at a loss). We can make it nearly impossible for any new platform to enter the marketplace, forcing Canadians to use the same stagnant platforms year after year. We can centralize and consolidate the entire industry into 2 or 3 big players and have everyone else fail (possibly to heavy losses of users of those platforms). And when a flawed security model doesn't work and gets breached, we can make it even more complicated with even more people in suits making big money doing the job that blockchain was supposed to do in the first place. We can build a system which is so intertwined and dependent on big government, traditional finance, and central bankers that it's future depends entirely on that of the fiat system, of fractional banking, and of government bail-outs. If we choose this path, as history has shown us over and over again, we can not go back, save for revolution. Our children and grandchildren will still be paying the consequences of what we decided today.
Or, we can find solutions that work. We can maintain an open and innovative environment while making the adjustments we need to make to fully protect Canadian investors and cryptocurrency users, giving easy and affordable access to cryptocurrency for all Canadians on the platform of their choice, and creating an environment in which entrepreneurs and problem solvers can bring those solutions forward easily. None of the above precludes innovation in any way, or adds any unreasonable cost - and these three policies would demonstrably eliminate or resolve all 109 historic cases as studied here - that's every single case researched so far going back to 2011. It includes every loss that was studied so far not just in Canada but globally as well.
Unfortunately, finding answers is the least challenging part. Far more challenging is to get platform operators and regulators to agree on anything. My last post got no response whatsoever, and while the OSC has told me they're happy for industry feedback, I believe my opinion alone is fairly meaningless. This takes the whole community working together to solve. So please let me know your thoughts. Please take the time to upvote and share this with people. Please - let's get this solved and not leave it up to other people to do.

Facts/background/sources (skip if you like):

submitted by azoundria2 to QuadrigaInitiative [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

r/Bitcoin recap - April 2019

Hi Bitcoiners!
I’m back with the 28th monthly Bitcoin news recap.
For those unfamiliar, each day I pick out the most popularelevant/interesting stories in Bitcoin and save them. At the end of the month I release them in one batch, to give you a quick (but not necessarily the best) overview of what happened in bitcoin over the past month.
You can see recaps of the previous months on
A recap of Bitcoin in April 2019
Archeology (Financial Incumbents)
Price & Trading
Fun & Other
submitted by SamWouters to Bitcoin [link] [comments]

General info and list of exchanges for Decentralized Accessible Content Chain

Decentralized Accessible Content Chain 한국어HomeNewsTechnologyDAPP'sTeamAdvisorsPartnersCommunity The Future Of Digital Content Is Here. DACC is the world’s first content-based blockchain that features identity and access management (IAM) at the infrastructure level. Join Telegram Community Join Token Sale Whitepaper Rating of DACC DACC In The News The #1 blockchain startup to watch in Q2 2018David Wither, Influencive (March 2018) “With a community this massive and a heavily experienced team,I am most excited to see this project go to market in Q2.”“DACC provide[s] platforms … for those that are interested in the global, decentralized incentivizations for doing things they love”“DACC could help small media companies and creators better and more efficiently distribute and profit from their content.”“DACC Blockchain Is Bigger Than the Beatles And Better For Music Streaming”“DACC Blockchain Will Bring You Closer to the Music Artists You Love”“Meet DACC: The Blockchain Solution That Could Solve Music Piracy” DACC Will Revolutionize The Digital Content Industry. Centralized content platforms like Facebook and Youtube have failed us. IP Piracy Personal Data Theft Monopolization of Monetization
The First IAM Based Distributed File System. DACC users will have full control and protections with respect to: Content Creation Copyright information is time-stamped into DACC blockchain. Algorithms are used to detect copyright theft. Content Access IAM permission maps let users decide who gets to access and monetize their data/content/IP. Content Storage Decentralized storage with partitions and permission maps to prevent piracy and data theft.
Block Structure Designed With IAM.
Permissions As A Transaction Access to creative IP and personal social data is treated as a transaction. Immutably stored and monetized by rightful owners. Merkle Roots Allows for faster transaction verification and scalability. Smart(er) Contracts Full flexibility to define rules for token exchanges in relation to any permission transaction. Use DACC To Develop Any Content-Based Platform. All content platforms need strong IAM. DACC is the ideal blockchain technology for developing content-based DAPP’s. Standard Libraries Further define IAM services and transactions for your DAPP. DACC Wallet Full stack solutions for token payments, transfers, and storage. DACC Chain Services Modular design to integrate with third party platforms, API’s, and Layer 2 protocols.
DACC x Vinci Smart Headphones Audio Content DAPP
DACC will partner with Vinci Smart Headphones to develop the first DAPP on DACC - a decentralized audio content platform. Proof of Recommendations DAPP token economy consensus algorithm built using DACC developer tools. Get Paid To Create & Curate Creators earn rewards for positive ratings on high quality content. Consumers earn rewards for providing ratings and reviews. Copyright Protections All content ownership information time-stamped immutably into the DACC blockchain. Team Members Vincent Nguyen Team LeaderBS Eng(Columbia),MBA(MIT)10 yrs finance,AI/loT industries Vincent Nguyen Team Leader Harold Li Technical LeaderBS Comp Sci(BUPT), MS IT(CMU), MS Applied Math(Peking Uni) Tech lead at Meituan, Vinci, Flipboard Harold Li Technical Leader Jim Ai Audio Tech LeadPhD Physics(MIT) BBN,SRI intl,Apple 12 yrs of audio,sound systems experience Jim Ai Audio Tech Lead Jun Zhang AI Tech LeadHarvard Research Fellow,PhD Math(Rice) Microsoft Principal Machine Leaming Researcher 10 yrs deep learning experience Jun Zhang AI Tech Lead Gina Hughes Media and PR LeadBS(Maryland) Prev.Head of PR at Monster Headphones Founder of Gina Hughes Media and PR Lead Cathy Cao Media and PR LeadBS MIT 3 years of AI company experience Cathy Cao Media and PR Lead Advisors Jeffrey Wernick Entrepreneur, Private Investor.40 years of investment experience including Uber and Airbnb In addition to DACC, also on QTUM advisory board Began career trading options/ futures while at the University of Chicago. Later worked at Salomon Brothers As investor, his focus expanded to the sharing economy, biomedical, and blockchain technologies Advisor Jeffrey Wernick Entrepreneur, Private Investor. Walter Komarek Co-founder INK, Angel Investor, President and Managing Partner at ForbesfoneBeing a respected figure in the European telecom market, Walter Komarek is CEO at Angel Investment and a President and Managing Partner at Forbesfone (the largest Maltese telecom company). Walter Komarek is engaged in telecom, new technologies and blockchain startups. Having graduated from the University of Salzburg, Walter Komarek has proficient expertise in business strategy and business development. Advisor Walter Komarek Co-founder INK, Angel Investor, President and Managing Partner at Forbesfone Andy Tian CEO and Co-FounderCo-Founded AIG, whose flagship product Uplive is the highest monetizing mobile live video platform across APAC and Middle East Previously GM of Zynga China and also led Google’s mobile business in China Head of the Gifto project and successfully launched the Gifto ICO Investor Andy Tian CEO and Co-Founder Philippe Bouaziz Founder of Prodware GroupPhilippe is known as one of the leading tech personas in Europe and Israel, sitting on numerous advisory boards for engineering and business schools Founded Prodware Group in 1989. Global IT solutions company (EPA: ALPRO) which has served 17,500 customers in 75 countries Advisor Philippe Bouaziz Founder of Prodware Group Jared Polite Head of Marketing at Crypto Media GroupAs an Investor in full service ICO campaigns. He has been involved with over 40 projects to date These Projects has raised north of $300MUSD Advisor Jared Polite Head of Marketing at Crypto Media Group Zhao Dong General Partner & Co-Founder of DCM ChinaOne of the top VC investors in Asia, and has raised over $30 billion of financing for tech and telecom companies Sourced and led DCM’s investment in VanceInfo (NYSE: VIT), BitAuto (NYSE: BITA), and Dangdang (NYSE: DANG), and remains as a board member Former Vice President at Goldman Sachs covering Tech, Media and Telecom Investor Zhao Dong General Partner & Co-Founder of DCM China Oliver Li Partner of Draper Dragon FundOver 10 years of VC experience with companies such as Sino-Century, Withub VC, and South River Capital Placed successful investments in software, semiconductor, gaming sectors, such as Jiaoda Withub (HK 8205), Hyron Software (Shenzhen 002195), Actions Semiconductor (Nasdaq ACTS), and Wind (financial data service company) Advisor Oliver Li Partner of Draper Dragon Fund Luca Nichetto Founder and CEO of Nichetto StudioWorld renown art and industrial designer who has won international prizes, including the Gran Design Award, the Good Design Award, the IF Product Design Award, and the Elle Designer of the Year Award Art director for numerous design brands, exhibitions and competitions in Europe, the US, and Japan Advisor Luca Nichetto Founder and CEO of Nichetto Studio Matthew Cheng Founder and Managing PartnerVC expert and founder of Cherubic Ventures, whose portfolio includes Coinbase, Flexport, Virgin Hyperloop One, Wish, Ring, TianGe Interactive, LiuliShuo, and Pinkoi Founding member at Tian Ge Interactive (1980:HK), China's largest live social video platform Selected to China's "Top 40 under 40" list from 2013-2016 by Cyzone Anchor Investor Matthew Cheng Founder and Managing Partner Justin Sun Founder of TRONFounded and successfully launched the TRON (TRX) platform and ICO Founder and CEO of PEIWO, an app aspiring to become China's Snapchat and has recorded more than 4 billion chats to date Was named a Davos Global Shaper in 2014 and was also formerly the representative of Ripple in China Investor Justin Sun Founder of TRON Omer Ozden Legal Counsel at ZhenFund and DFundInternational securities lawyer with 20 years experience VCPE, IPO's M&A, fund formation, and securities regulation Has worked with NetEase, Alibaba, Baidu, New Oriental, Suntech, E-Long and their investors, including SoftBank, Goldman Sachs, DragonTech, Warburg Pincus and Merrill Lynch Previously a Partner at Baker & McKenzie LLP and led the China securities transactional team on PE financings, IPOs and securities compliance Advisor Omer Ozden Legal Counsel at ZhenFund and DFund Yu Hong Former of 3am commuity&Kfund &QYGAME Investor Yu Hong Former of 3am commuity&Kfund &QYGAME SKY Cofounder of 3am Block Community & Foundation PartnerSerial Entrepreneur in the Social Media and Social Networks space Pioneer in the China mobile messaging space and founder of companies such as Founder of Vinci Smart Headphones, world’s first standalone headphones with built-in AI Founding Partner of Roark Fund which has invested in over 20 blockchain projects Advisor SKY Cofounder of 3am Block Community & Foundation Partner Jia Tian Chief ScientistAI industry veteran and former Senior Developer at Baidu and Alibaba Currently serves as the Chief Scientist at BitFund.PE, a bitcoin fund which was founded by Xiaolai Li and has been dedicated to supporting the bitcoin community since 2013 Mr. Tian is also an advisor to multiple blockchain tech startups such as IOST, DATA, Hydro, and more Advisor Jia Tian Chief Scientist Haobo Ma AELF CEO & FounderCEO & Founder of AELF, a decentralized cloud computing blockchain network. AELF currently has a market cap of over USD 250M CEO & Founder of Hoopox which develops blockchain as a service solutions CTO & Co-Founder of GemPay, China's first Bitcoin payment company Member of Blockchain Expert Committee of China Electronic Association, and a member of Blockchain Professional Committee of China Computer Society Investor Haobo Ma AELF CEO & Founder Roy Li Ruff CEO /Ruff Chain Investor Roy Li Ruff CEO /Ruff Chain Li Quan D- fund Partnerfocuses on investment in the digital currency sector and provides end-to-end investment banking services for the project. Major investment projects: TNB, QASH, aelf, Cybermiles, LLT, MobileCoin, Beechat, etc. Investor & Advisor Li Quan D- fund Partner Kelvin Hsu Founder of BlockVC Advisor Kelvin Hsu Founder of BlockVC Huang He Co-Founder and CEO of MailTimeSerial entrepreneur and founder of 2 mobile communication companies - TalkBox and MailTime, which recently came out of Y Combinator (W16) Creator of the top podcaster in China with over 2 million views daily Co-founded and launched successful ICO for MDT (Measurable Data Token) Advisor Huang He Co-Founder and CEO of MailTime Ge Wenxing Dfund Partner Investor & Advisor Ge Wenxing Dfund Partner Grace Fan Brink Asset CEOGraduated from the department of Business Management, University of British Columbia BD Director of RuffChain Internet serial entrepreneur with years of experience of sales and marketing IoT enthusiast, in charge of several IoT operations projects Advisor Grace Fan Brink Asset CEO Ray Wu Managing Partner at Skychee VenturesFormer and partner at Cybernaut Capital Management Former Managing Director of HP’s new business ventures. Veteran at Cisco Systems, and held several senior positions leading investment, M&A, and internal incubation Dual M.B.A. degree from Berkeley and Columbia Investor Ray Wu Managing Partner at Skychee Ventures Kathy Chen Former CEO of Twitter Greater ChinaCurrently works as Area Vice President at IT and cloud company Citrix Previously General Manager of the SMS&P Greater China Team and General Manager of Cloud and Enterprise Product Group at Microsoft Previously General Manager of Eastern China Region at Cisco Advisor Kathy Chen Former CEO of Twitter Greater China Dou Wang Founder of JIC capitalBlockchain Robot inventor. Global Community operations expert. Invested more than 100 blockchain projects all over the world with high Returns. Investor Dou Wang Founder of JIC capital Jianguo-Wei Former CEO of Twitter Greater China Advisor Jianguo-Wei Former CEO of Twitter Greater China Partners
Pre-Sale Bonus Available Now! Join Telegram Community Join Us On Social Media Follow us on Facebook, Twitter, and Telegram. Terms Privacy
submitted by icoinformation to DACChain [link] [comments]

Optimize Your Crypto Bot Trading by Understanding Exchange Liquidity Pyke - YouTube My Top 3 Picks For The 2019 March Madness Mini Bull Run Stellar $XLM Quarkchain $QKC Covalent $Cova Merkle Trees - Efficient Data Verification What Are Merkle Trees? [Blockchain & Cryptocurrency (Bitcoin, Ethereum)] How to Read a Blockchain Explorer Earn 60K TRUE coins listed in Binance, hitbtc

Each Bitcoin block has the Merkle root contained within the block header. It’s how we confirm the contents of the block and consistency of a number of ledgers. If my copy of the blockchain has the identical Merkle root for a block as your copy of the blockchain, then we all know all of the transactions in that block are the identical and we agree on the ledger. Even a tiny inconsistency ... A Merkle tree is nothing fancy tho, it’s just a structure created by grouping all the transactions in pairs and hashing them together, then proceeding to hash the resulting hashes together and continuing this process till there is only one hash left, called the merkle root.. This creates a tree where every node has two children, which can be used to create their parent node. The screenshot above is from Merkle Science’s blockchain forensics tool UPDATED Analysis — as of Monday, 20 July 2020. The cluster of bitcoin addresses linked to Twitter Hack 0 (see above ... Lorsqu'on s'intéresse à comment Bitcoin fonctionne, on entend parfois parler des arbres de Merkle qui interviennent dans la validation des transactions et des blocs. Décrits par Satoshi Nakamoto dans le livre blanc, ils forment un rouage essentiel dans le fonctionnement de la cryptomonnaie.Ils sont aussi à la base d'idées diverses comme Taproot. Merkle Trees. A merkle tree or binary hash tree is a structure in which all transactions in a block are recorded. A merkle tree consists of a function that recursively hashes pairs of nodes (in our case, transactions), until only one hash is left, which is called the root or merkle root. In the Bitcoin world, the cryptographic hash algorithm ... Bitcoin SV (BSV) - $2.54B - $142.42; Monero (XMR) - $1.56B - $91.00; Be nice to each other! r/CryptoCurrency is a welcoming place for all cryptocurrencies. Live Discussion on Discord Crypto Devs CryptoCurrencyMemes. Monthly Top 10 Market Cap Subreddits. r/Bitcoin r/Ethereum r/Ripple r/Litecoin r/BitcoinCash r/Binance r/Tether r/EOS r ... Each Bitcoin block has the Merkle root contained in the block header. It’s how we verify the contents of the block and consistency of multiple ledgers. If my copy of the blockchain has the same Merkle root for a block as your copy of the blockchain, then we know all the transactions in that block are the same and we agree on the ledger. Even ... Bitcoin SPV指的是在bitcoin网络上进行简单支付验证。当前主流区块链用户账户数据保存,主要分为UTXO和账户模型。由于UTXO的特点造成了在bitcoin平台进行余额管理、交易构造的复杂性。在区块链... 知识:钱包,区块,创世块,代币. 6. 2019年的五个比特币(BTC)记录及其含义 The root hash can be used as the fingerprint for an entire data set, including an entire database or representing the entire state of a blockchain. In the following sections, we will discuss how Bitcoin and other systems implement Merkle trees. Merkle Trees in Bitcoin. The cryptographic hash function employed by Bitcoin is the SHA-256 algorithm ... c. Bitcoin is secure to the point that it would require approximately 1% of the entire world’s energy consumption to attack the network. d. A malicious actor would need 10 times the amount of Bitcoin’s energy consumption in order to successfully attack the network. 30. What is a Merkle Root in Bitcoin? a. A hash of all transactions in a ...

[index] [1130] [711] [1812] [5724] [10099] [23127] [16028] [23318] [13789] [5338]

Optimize Your Crypto Bot Trading by Understanding Exchange Liquidity

Live Bitcoin Liquidation Watch: May 22 2020 IntroToCryptos 191 watching Live now 8.01x - Lect 24 - Rolling Motion, Gyroscopes, VERY NON-INTUITIVE - Duration: 49:13. Binance pair liquidity: https: ... Now that we understand the problem and some of the root causes, here are solutions. *1. Choose an exchange with excellent liquidity* The first step is to pick ... Bitcoin 101 - Merkle Roots and Merkle Trees - Bitcoin Coding and Software - The Block Header - Duration: 24:18. CRI 41,642 views. 24:18. What is Blockchain - Duration: 13:59. Marshall Bruce Mathers III, better known by his stage name Eminem (stylized as EMINƎM) and by his alter ego Slim Shady, is an American rapper, record producer, songwriter and actor. Come check out my picks for the March Madness Bull Run. Will Bitcoin Continue to Rise. How high will Stellar Quarkchain and Covalent will go. I talk about all of this in this exciting episode of I ... 6:56 Advanced Details for Blockcypher (Nonce/Merkle Root/Difficulty/Version) 11:39 13:01 Block Details (Block Hash/CoinAge) 19:53 Breaking down tracking transactions in ... About Merkle Trees, used for Efficient Data Verification. In today's episode Nick... branches out and discusses Merkle Tree, that's all I've got for this one. ===== I'm not a financial adviser. Do ... FROM BABYLON TO AMERICA, THE PROPHECY MOVIE by School for Prophets - Attila Kakarott - Duration: 2:03:07. New Haven SDA Temple - Brooklyn, NY 651,293 views